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On the Performance of Parallel Algebraic

Multigrid

Arne Nägel∗

October 2002

Abstract

As algebraic multigrid (AMG) can be applied to a wide variety of prob-
lems on extremely large, unstructured grids on the one hand and massively
parallel computer systems are available on the other hand, there has been
a need for parallel implementations of AMG. This report analyses the per-
formance of BoomerAMG[1], a parallel algorithm developed at Lawrence
Livermore National Laboratory.

Abstracting the implementation we describe the basic components of
the costly setup phase and analyse their behavior in a (massively) parallel
distributed memory environment. We present numerical results, compare
them to the developed theory and finally aim at possible improvements
in the future.
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1 Introduction

After some remarks on general assumptions and notation, we are going to an-
alyze the three major components of the AMG setup phase. Sections 2 and 3
deal with details of the coarse grid selection, sections 4 and 5 analyse the com-
putation of interpolation and the coarse grid operator, while section 6 finally
contains test results.

1.1 Parallelization model

Target platforms for this work are in general, parallel distributed memory archi-
tectures. We assume that message passing strategies are implemented in MPI
and, for reasons of simplification we do not exploit the fact that some target
platforms may support shared memory within clusters. As we are interested in
solving linear systems of the form

Ax = b,

A = (aij), x = (xi), b = (bi)

arising from partial differential equations, the equations and their data are dis-
tributed naturally using domain-partitioning. We make the following simplify-
ing assumptions:

Let Ω be the original grid, let Π be the set of processors involved and let each
processor hold a subset Ωp of grid points. We assume maximal symmetry, i.e.
let each Ωp be a cube of size N . We denote the ghost points, i.e. all off-processor
neighbors of nodes on processor p, by ∂Ωp = {j ∈ Ω|∃i ∈ Ωp : aij 6= 0, π(j) 6= p}.
According to our assumptions about the grid structure, the cardinality of this
set depends on d, the degree of the graph. We assume that the maximal distance
between a point in ∂Ω and the closest point in Ω is given by

r =
⌈

3
√
d− 1

2

⌉

(1.1)

in 3-D, which represents the number of neighbors of the center point in a cube
of size d. To estimate the cardinality of ∂Ω, we use the formula

|∂Ωp| = 3
3
√
N
2
2r + 3

3
√
N(2r)2 + (2r)3. (1.2)

Analogies in two dimensions may be developed straight forward. In the
remainder of this work, the relation

|∂Ωp| =
∑

q∈Np

|∂Ωq ∩ Ωp| (1.3)

will be important, when A is symmetric.
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1.2 Platform specific details

The most important aspect in this analysis will of course be the trade-off between
computation and communication. To quantify these sizes and to relate them to
the actual time needed, we use the

following concept. We define:

The time (in seconds) for passing a message of m doubles from one processor
to another is given by

Tcomm(m) = α+ βm. (1.4)

In some passages the variable ν = ν(N, d,Ω) is used to bound the number
of neighbors of an arbitrary processor.

The time (in seconds) for n floating point operations (flops) on a fixed pro-
cessor is given by

Tcomp(n) = γn. (1.5)

Representative values for IBM ASCI Blue are

α = 59µsec,

β = .25µsec / double,

and γ = .06µsec / flop

1.3 Compressed Row Storage

The Compressed Row Storage (CRS) format offers the possibility to store a
sparse matrix A = (aij) without further assumptions on the sparsity structure.
It stores the nonzeroes of the matrix in three contiguous memory locations
using an indirect addressing scheme explained in the remainder of this subsec-
tion. Note that this fact influences, for example, the efficiency of matrix/vector
products. For a quick overview and additional information on different storage
formats refer to [5].

Let us assume in this subsection, that A has n rows and nz nonzero entries.
To store the matrix, three different vectors are initialized: one of size n + 1,
denoted by ai, and two of size nz, denoted by aj and adata, respectively. The
actual nonzero entries are stored in the latter one, row by row starting in the
upper left hand corner, whereas the other ones are used for a consistent indirect
addressing strategy. Each entry in ai represents an offset for a single row of A
in the two other vectors, e.g. if we are interested in the k-th row of A, we have
to inspect all slots s satisfying ai[k] ≤ s < ai[k + 1]. The entries in aj indicate,
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which column the data in adata belongs to.

The scheme should be comprehensible after looking at the example:

A =









1 2 0 0
3 4 5 0
0 6 7 8
0 9 0 10









,

which will be stored in the vectors

ai : 1 3 6 9 11

aj : 1 2 1 2 . . . 2 4

adata : 1 2 3 4 . . . 9 10 .
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2 Coarse Grid Selection

The selection of the coarse grid is the only one of the three analysed components,
which is explicitly non-local by nature. Typical of AMG all coarsening schemes
are derived using concepts of dependence and influence. We say that point i
depends on point j, if the value of the unknown j is important in determining
the value i. Thus we denote by Si the set of points point i depends on and led
by M-matrix properties we define in analogy to the original approach by Ruge
and Stüben:

Si = {j 6= i : −aij ≥ θmax(−aik)}. (2.1)

Note that Si may be identified with a row of a matrix S = (sij). The set of
points depending on point i is thus denoted by STi . Additionally we define the
coarse neighborhood (of point i) Ci = Si∩C. We are now giving a brief overview
of the classical (sequential) algorithm and look at how it may be employed in
BoomerAMG.

2.1 Ruge-Stüben Coarsening

The classical Ruge-Stüben coarsening (RS) is based on the criteria:

(C1) For each i ∈ F , each j ∈ Si is either in C or in Sj ∩ Ci.

(C2) C should be a maximal subset with the property, that no point in C
depends on another point in C.

We implement these heuristics using the measure

µ(i) = |STi |,∀i ∈ Ω, (2.2)

which is iteratively used to find a point i most valuable to be
part of the coarse grid. As, according to the heuristics, its
neighborhood is affected by this decision, measures in the
neighborhood are changed afterwards. The value µ will be used
as a key in the hashtable U and we use the pseudo code:

C ← ∅;
F ← ∅;
while U 6= ∅ {

select i ∈ U [mmax];
C ← C ∪ {i};
U [mmax]← U [mmax] \ {i};
for each j ∈ STi {

m← µ(j);
F ← F ∪ {j};
U [m]← U [m] \ {j};
for each k ∈ Sj {

m← µ(k);
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U [m]← U [m] \ {k};
U [m+ 1]← U [m+ 1] ∪ {k};

}
}
for each j ∈ Si {

m← µ(j);
U [m]← U [m] \ {j};
U [m− 1]← U [m− 1] ∪ {j};

}
}

In order to enforce (C1) rigorously, we perform a second
pass removing F-F dependencies.

for each i ∈ F {
for each j ∈ Ci {

mark j;
}
for each j ∈ Fi {

for each k ∈ Sj {
check, if k is marked;

}
}
for each j ∈ Ci {

unmark j;
}

}

The algorithm has a straight forward structure and runs in γO(Nd2), if we
assume O(1) cost for removing and adding entries to the lists U [m]. (Note that
each point in the neighborhood of a selected point is very likely to have lots of
connections too.)

2.2 Coarsening using CLJP

Based on a graph coloring algorithm by Jones and Plassmann presented in
[3], CLJP [4] is a slight variation based on modified
measures µ(i) = |STi |+ ρ(i), i.e. the number of points influenced by i
incremented by a random number in (0,1), which is used to break ties. The

heuristics applied are slightly different from the previous ones:

(H1) Values at c-points are not interpolated; hence, neighbors that influence a
c-point are less valuable as potential c-points themselves.

(H2) If k and j both depend on a given c-point i, and j influences k, then j is
less valuable as a potential c-point, k can be interpolated from i.
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Although details about the implementation are postponed to the
following section, remark the similarity of the algorithm to the
RS-approach:

C ← ∅;
F ← ∅;
for each i ∈ V {

µ(i) = |STi |+ ρ(i);
}
while V 6= ∅ {

select an independent set D = {i|µ(i) > µ(k)∀k ∈ Si ∪ STi };
C ← C ∪D;
change measures, i.e. apply heuristics to V ← V \D;
select further f-points according to changed measures;

}

2.3 Falgout Coarsening

Tests in [1] show, that a hybrid RS/CLJP scheme called Falgout Coarsening,
achieves very satisfying results. As the RS scheme produces sparse coarse grids
and reaches some near optimal results in many geometric cases, it seems to be
a promising approach when applied to the interior of the processor. Unfortu-
nately, the boundaries have to be treated in a different way to avoid dependecies
between F points, violating (C1), which may lead to a packing of c-points in
this area. As the CLJP algorithm explained below is based on similar heuris-
tics, but introduces a random component to categorize points, it is very likely
to produce a larger number of C-C connections in the interior of the processor
than desirable. Falgout coarsening avoids this by choosing a set of coarse points
according to the RS scheme and using this data (while neglecting decisions made
on the boundary) as first independent set for CLJP. Once the CLJP heuristics
are applied, all points in the interior become f-points and CLJP operates on the
boundary only in the following steps.

According to the CLJP reduction model derived, it is desirable to start off
with the smallest possible degrees locally. An additional feature of the model
is that the algorithm seems to reduce graphs with strongly varying degrees
very efficiently, which would make this hybrid scheme a very effective algorithm
for treating the boundaries. Unfortunately, the growing stencil increases the
number of points in this area too.
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3 Cost of CLJP

The implementation of the CLJP algorithm in BoomerAMG basically consist
of one loop marking all points as C or F points which aborts when all points
(or vertices according to graph theory) have been colored. The computational
side of the loop can be performed locally, but in between some communication
is required to ensure consistent coloring on the processor boundaries. Although
pseudo code is given in a general version following [2], we assume in the analysis
itself, that A is symmetric. No matter, the formulas derived should also work
well for a non-symmetric A, if we have symmetry over the the processor bound-
aries in the sense, that |Ωp ∩ ∂Ωq| = |Ωq ∩ ∂Ωp|, ∀p, q ∈ Π. This is obviously
true in the symmetric case, as the sets are identical.

3.1 The setup phase

Before the actual computation may start, we have to make sure that each pro-
cessor is able to compute the weights correctly and is informed about strength
information in its ghost area. As this is information stored in the column of the
strength matrix S and we assume CRS storage format, we have to submit row
information related to nodes on different processors’ Ωq in advance. Receiving
the symmetric data, we define the environment of points sending information
for the later evaluation of local maxima and collect the missing information of
STi , ∀i ∈ Ωp After this, we compute the measures µp(i), the contribution of
processor p for weights in each point i ∈ Ωp.

send filtered rows Si, i.e. S
δ
i = {sij |i ∈ Ωp,∃q : j ∈ Ωq};

receive filtered rows Sδi ;
compute µp(i), ∀i ∈ Ωp;

Doing all this is rather cheap, using the assumption about symmetry the
costs are bounded by

Tsetup = να+ β|∂Ωp|d+ γ|Ωp|d (3.1)

(Note: In the actual implementation the sets Sext =
⋃

Sδi are computed by
determining necessary entries for the matrix multiplication SA.)

3.2 The main loop

The original algorithm is based on the selection of a maximum independent
set D according to the measures, an iterative extension of C using D and the
application of the heuristics according to the chosen C points. In the current
code this is implemented in a two pass strategy, both of the passes require
additional communication.

In the k-th step the graph Gk = (Vk, Ek) is defined by the undetermined
vertices Vk and remaining edges Ek and we start with an initial graph G0 =
(V0, E0). If k 6= 0 let us assume, that in the previous steps sets of coarse and
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fine grid points, Cj and Fj , were removed for all j < k. The degree of the graph
Gk is denoted by dk; to simplify notation we use the same notation for the local
degree, i.e. the degree in each grid point. Furthermore we identify sets and
their cardinal numbers.

The first pass determines local maxima and thus requires the most recent
information about the weights, which are determined/changed by the setup
hase/the second pass. The necessary update consists of sending ghost measures

changes (and receiving values for non-ghost points), a computational update
and sending the updated values to all neighbors.

send ghost measures decrements, ∀i ∈ ∂Ωp;
receive measure decrements, ∀i ∈ (

⋃

q 6=p ∂Ωq) ∩ Ωp;

update measures, i.e. subtract decrements, ∀i ∈ Ωp;
send measures µ(i), ∀i ∈ (

⋃

q 6=p ∂Ωq) ∩ Ωp;

receive ghost measures µ(i), ∀i ∈ ∂Ωp;

After this, the values µ(i) are known locally for every i ∈ Ωp and every p ∈ Π.
The update costs are given by

Tcomm = 2να+ 2β
∑

q∈Np

|∂Ωp ∩ Ωq|+ γ
∑

q∈Np

|∂Ωq ∩ Ωp| (3.2)

Now the identification of local maxima and some operations on the previ-
ously found coarse and fine grid points are performed. Note, that we might
claim for some points on the boundary to maximize µ in the environment on
processor p, which are not local maxima repects to other processors.

for each i ∈ Gk {
if i ∈ Ck ∪ Fk
remove i from Vk;
}
else {
for each j ∈ Si

if µ(i) > µ(j) then j /∈ Ck+1 ∪ Cδ
k+1;

if µ(j) > µ(i) then i /∈ Ck+1;
}
}

}
for each i ∈ Gδ

k {
if i ∈ Cδ

k ∪ F δ
k

remove i from V δ
k ;

}
else {
for each j ∈ Sδi

if µ(i) > µ(j) then j /∈ Ck+1 ∪ Cδ
k+1;
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if µ(j) > µ(i) then i /∈ Cδ
k+1;

}
}

}

We divscover that the overall costs to do this are (note the dramatic size of
the second addend for large d):

T1st = γ(Vk + (Vk − Ck − Fk)d) + γ(V δ
k + (V δ

k − Cδ
k − F δ

k )d
δ) (3.3)

In a global exchange step, the global graph size is computed, to determine,
if the algorithm already converged. The costs are

Tsync = (α+ β)2log(P ) (3.4)

A true local maximum is recognized as such on all involved processors:

send ghost cf-values, ∀i ∈ ∂Ωp;
receive cf-values, ∀i ∈ Ωp, π(i) 6= p;
compare cf-values, ∀i ∈ Ωp, π(i) 6= p, correct falsely identified local maxima;
send cf-valuesµ(i),∀i ∈ ∂Ωp;
receive ghost cf-values, ∀i ∈ ∂Ωp, π(i) 6= p;

Costs are the same as for the first communication step; the comparison should
not be too expensive, it may i.e. be implemented by putting the maximum of
two values into the local cf-value vector.

Last, but not least, the second pass is performed, i.e. the heuristic
are applied:

for each i ∈ Vk
if i ∈ Ck {
for each j ∈ Si {

mark (i,j) for removal;
decrement µ(j) by 1;

}
}
else if i /∈ Ck {
for each j ∈ Si ∩ (Ck ∪ Cδ

k) {
mark (i,j) for removal;
decrement µ(j) by 1;

}
for each j ∈ Si such that{

(i,j) is not marked for removal (noncoarse)
if (i and j share a c-point) {

mark (i,j) for removal;
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decrement µ(j) by 1;
}

}

}
}

The costs are:

T2nd = γ(Ckd+ (Vk − Ck)(d
2 + d))

= γ((Vk − Ck)d
2 + Vkd) (3.5)

Summarizing (3.2)-(3.5), we end up with

Tk = α(4ν + 2log(P ))

+ β(4
∑

q∈Np

|∂Ωq ∩ Ωp|+ 2log(P )) (3.6)

+ γ((Vk − Ck)d
2 + (Vk + Vk+1 + V δ

k+1)d+ Vk + V δ
k +

∑

q∈Np

|∂Ωq ∩ Ωp|)

for the k-th iteration. To estimate the overall cost of CLJP the most critical
question now is how many iterations are performed and what single terms

in the
formula above look like.

3.3 A simple approach

To get used to certain concepts and ideas, which will then lead to a more complex
model, we will now give a brief overview of an approach we used at first, which
analyses a slightly simplified algorithm. The results are very poor, but some
general tendencies can already be seen. When we are talking about the

(local) degree dk of point i (in the k-th iteration), in the remainder of
this section, we think of it as the number of neighbors i strongly depends

on that have not been categorized to be fine or coarse yet. Let us remark first,
that we are allowed to express the average degree of the original graph, d0 as
an expected value:

E[d0] =
∑

i∈V0

1

V0
d0(i) (3.7)

The same is obviously true for d1. Denoting the difference of the degree caused
by the removal of coarse and fine grid points by d0,c and d0,f yields the following
relation:
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E[d1|V1] =
∑

i∈V1

1

V1
d1(i)

=
1

V1

∑

i∈V1

d1(i)

=
1

V1

∑

i∈V0

(d0(i)− d0,c(i)− d0,f (i)

=
V0
V1

(E[d0]− E[d0,c]− E[d0,f ]) (3.8)

I.e. given V1 we expressed the conditional expected value for level 1 of the
algorithm in terms of expected values for level 0.

The second point to mention is, that we should expect a relation between the
degree and the number of chosen coarse grid points. Every vertex i ∈ V0 has d0
neighbors, the set Ni; the probability of µ(i) > µ(j) for all j ∈ Ni is

1
d0+1

. Thus,

assuming constant degree, we should expect C0 =
V0

d0+1
and V1 = V0

d0

d0+1
− F0.

As these thoughts are valid in each of the following steps too, we are now able
to bound the number of steps of a CLJP-like-algorithm:

Lemma 1 Assume, the problem is symmetric and we are using a slightly
different algorithm not selecting fine grid points. Then the number of chosen

coarse grid points is expected to be constant and the degree decreases by one in
each step.

Proof: If we assume, that the problem is symmetric and on average of constant
degree dk in each step, the inequalitiy

∑

i∈Vk

dk,c(i) + dk,f (i) ≥ 2Ckdk (3.9)

holds, as we remove at least incoming and outgoing edges for each coarse
grid point. Assuming Ck = Vk

dk+1
yields the identity:

Vk − 2Ck

Vk − Ck − Fk
= (dk − 1)

Vk
dkVk − (dk + 1)Fk

(3.10)

(which is less than 1 if and only if Ck > Fk). The final estimation using Fk = 0
is thus

E[dk+1|Vk+1] ≤
1

Vk
(Vkdk − 2Ckdk)

=
Vk − 2Ck

Vk − Ck − Fk
dk (3.11)

= (dk − 1)
dkVk

dkVk − (dk + 1)Fk

= dk − 1 (3.12)
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k Vk C Ck F Fk dk
0 160000 31735.5 31735.5 637.5 637.5 3.99
1 127627 58587.25 26851.75 17615 16977.5 3.01
2 83797.75 77029.75 18442.5 38186.25 20571.25 2.15
3 44784 90005.5 12975.75 54172.25 15986 1.57
4 15822.25 96178.75 6173.25 61561.5 7389.25 1.24
5 2259.75 97166.5 987.75 62699.25 1137.75 1.13
6 134.25 97228.25 61.75 62769.75 70.5 1.08
7 2 97229.25 1 62770.75 1 1

Comparison with simple model:
∑

Vk = 434427, 12V0d0 = 320000

Table 1: Average results for the five point Laplacian, original grid.

Using this value as new estimation for the average degree dk+1, we get

dk+1 = dk − 1 = d0 − (k + 1) (3.13)

and

Ck+1 =
Vk+1

dk+1 + 1
=

Vk(1− 1
dk+1

)

dk
=

Vk
dk + 1

(3.14)

I.e. the number of chosen coarse grid points is constant and the degree decreases
by one in each expected step. ¤

Our algorithm is expected to use d0 + 1 steps to color V0 and we have

Vk = V0 − kC0 = V0(1−
k

d0 + 1
) (3.15)

and
d0
∑

k=0

Vk =
V0

d0 + 1

d0
∑

k=0

d0 + 1− k =
V0

d0 + 1

d0
∑

k=1

k =
1

2
V0d0 (3.16)

We remark that the f-points play a crucial role in the algorithm: they reduce
the local degree of the graph heavily, but their number is difficult to estimate,
as their choice strongly depends on the geometry of the stencil. (E.g. compare
5-point and 9-point Laplacian in 2-D!) In (3.11) we should add an additional
term related to the fine grid points in the numerator.

3.4 Numerical results

The following tables shows results for various 2-D problems with discrete Lapla-
cian operators: one run with a five point stencil on a grid of 400x400 points and
several runs with a nine point stencil on grids of different sizes.
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k Vk C Ck F Fk dk
0 97229.25 8722 8722 3355.25 3355.25 7.22
1 85152 15483.5 6761.5 16934 13578.75 4.39
2 64811.75 22432.75 6949.25 37971.25 21037.25 2.83
3 36825.25 28644.5 6211.75 55291.25 17320 1.94
4 13293.5 31804.5 3160 62642.25 7351 1.47
5 2782.5 32605.75 801.25 64256.25 1614 1.26
6 367.25 32720 114.25 64475 218.75 1.16
7 34.25 32730.25 10.25 64494.5 19.5 1.14
8 4.5 32731.5 1.25 64497.75 3.25 1.05

Comparison with simple model:
∑

Vk = 300500.25, 12V0d0 = 350997.5925

Table 2: Average results for the five point Laplacian, first coarse grid.

k Vk Ck Fk dk
0 28900 3157 1337.25 7.92955
1 24405.75 2363 5828.75 4.455041
2 16214 2043.25 7481.25 2.507405
3 6689.5 1246 4477.75 1.58027325
4 965.75 210 748.75 1.1913505
5 7 1.75 5.25 1

Table 3: Average results for 9 point Laplacian, 170x170 points.

k Vk Ck Fk dk
0 32400 3785 1287.5 N/A
1 27327.5 2050.75 5362.75
2 19914 1884.75 7107.75
3 10921.5 1731.25 6535.75
4 2654.5 458 1590.5
5 606 151.5 454.5

Table 4: Average results for 9 point Laplacian, 180x180 points.

k Vk Ck Fk dk
0 36100 4077.5 1889.25 N/A
1 30133.25 2485 4843.75
2 22804.5 2530 9532
3 10742.5 1801.5 6443.25
4 2497.75 581.5 1911.25
5 5 1.25 3.75

Table 5: Average results for 9 point Laplacian, 190x190 points.
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k Vk Ck Fk dk
0 90000 9960.5 3386.5 7.960044
1 76653 6264.5 12984.5 4.4253605
2 57404 6071 26314.5 2.6115815
3 25018.5 3681.75 12476 1.7304705
4 8860.75 1628.5 6231.75 1.34414075
5 1000.5 250 750.5 1.0588235

Table 6: Average results for 9 point Laplacian, 300x300 points.
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3.5 Improved estimations

Given any distribution of c-points, f-points and points of a certain degree on
the grid, the algorithm always performs two basic steps: it selects additional
c-points and applies the heuristics, which causes the degree to be decremented
locally. Therefore, we should be able to express one step of the algorithm using
a mapping that describes the change of probability for any point to be of a
certain degree or a certain status.

Given the cardinality of the whole set, expected values for cardinalities of
subsets are derived easily.

Since the first pass, the selection of c-points, depends on the neighborhood,
we introduce some additional notation: For each node i ∈ V1 the neighbor-
hood Ni consists of j1 points of degree 1, . . . and jd0

points of degree d0. We
characterize this property by a vector α(i) = (j1, . . . , jd0

)T ∈ Nd0 , for which
necessarily |α(i)| = d(i) holds.

Drawing an arbitrary node i, that is neither coarse nor fine, we would like
to characterize the probability, that i will become a c-point, i.e. event C occurs.
The properties to have a certain neighborhood and a certain degree are described
by events Aα and Dd. Note, that the events Aα, α ∈ Nd are mutually exclusive
and a partition of our probability space. The equation

Dd =
⋃

|α|=d

Aα (3.17)

holds and the events Dd, d = 1, . . . , d0 are a mutually exclusive partition as well.

Lemma 2 For a node of degree d the conditional probability to be assigned as
a c-point is

P (C|Dd) =
∑

|α|=d

P (C|Aα)P (Aα|Dd). (3.18)

The unconditional probability is then given by

P (C) =

d0
∑

d=1

P (Dd)P (C|Dd). (3.19)

Proof: According to (3.17), we have

CDd =
⋃

|α|=d

CAα.

and since the events Aα are mutually exclusive, the events CAα are too. As
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AαDd = Aα holds for all α, |α| = d, we have

P (CDd) =
∑

|α|=d

P (CAα)

=
∑

|α|=d

P (CAα)

P (Aα)
P (AαDd)

Dividing byP (Dd) 6= 0 finishes the proof of (3.18). This implies the second
statement. ¤

According to the algorithm a node i /∈ C ∪ F may be seleted to be a coarse
grid point, if d is greater than or equal to the degrees of all of its neighbors;
random components break ties between nodes of equal degree. Additionally,
we assume, that the probability for a neighbor being of a certain degree g is
independent of d. Translating this into our framework yields

P (C|Aα) =

{

0 if∃d ∈ {|α|+ 1, . . . , d0}, jd 6= 0
1

j|α|+1
else (3.20)

P (Aα|Dd) =
d!

j1! . . . jd0
!
pj11 . . . p

jd0
d0

1

(1− pc − pf )d
(3.21)

and thus

P (C|Dd) =
1

(1− pc − pf )d

d
∑

k=0

∑

(j1,...,jd−1,k,0,...,0)

1

k + 1

d!

j1! . . . jd0
!
pj11 . . . pkd.

(3.22)
Note the scalint term in (3.21), as we are sure, that none of the neighbors is
coarse or fine as well.

The heuristics change the local degree now, as certain edges are removed.
Points not depending on other points any more become fine grid points.

Lemma 3 Let every edge of (Vk \ Ck, .) be equally likely to be removed with a
probability given by Q(E)=q. Let i ∈ (Vk,d \ Ck,d) be an arbitrary node. Then
the conditional probability to have a degree g, 0 ≤ g ≤ d, after the application
of the heuristics is given by

P (Dg|Dd) =

(

d

g

)

qd−g(1− q)g (3.23)

Proof: Simple combinatorics. ¤
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3.6 Example

Let i ∈ V be a point of degree 2 and let the maximal degree be 4. Node i will
never become coarse, if one of its neighbors has a degree greater 2, i.e. if in its
neighborhood α(i) = (j1, j2, j3, j4) the sum j3 + j4 is greater than zero. Only
three possibilities are remaining:

α(i) ∈ {(2, 0, 0, 0), (1, 1, 0, 0), (0, 2, 0, 0)}, (3.24)

and we have

P (C|D2) = 1
2!

2!
p21 +

1

2

2!

1!1!
p1p2 +

1

3

2!

2!
p22 (3.25)

3.7 Generalized notation

We now express the selection of the coarse grid and the application of the
heuristics in the following framework: Let p = (pf , p1, . . . , pd0

, pc)
T ∈ Rd0+2 be

a vector describing the possibility of any point in the set to be a f-point, a points
of degree 1 to d0 or a c-point. Let P denote the set of these vectors.

Each iteration in the algorithm may then be described by a mapping

Φ : P → P (3.26)

(pf , p1, . . . , pd0
, pc)

T 7→ ( pf +

d0
∑

i=1

piP (C|Di)q
i,

d0
∑

i=1

piP (C|Di)

(

i

1

)

qi−1(1− q)1,

d0
∑

i=2

piP (C|Di)

(

i

2

)

qi−2(1− q)2, (3.27)

. . . ,

pd0
P (C|Dd0

)

(

d0
d0

)

q0(1− q)d0 ,

pc +

d0
∑

i=1

piP (C|Di))
T

Describing the cardinalities of sets of a certain degree by expected values yields
that

q(p) =

d0
∑

i=1

piP (C|Di)i

d0
∑

i=1

piP (C|Di)i

(3.28)
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may be a useful estimation for Q(E). Additionally we set

P (C|Di)(p) =
1

(1− pc − pf )i

i
∑

ji=0

∑

α=(j1,...,ji,0,...,0),|α|=i

1

ji + 1

i!

j1! . . . ji!
pj11 . . . pjii .

(3.29)
according to the preceding subsection.

Then Φ is a rational function in p and we note that P (C|Di)(p) ≤ 1
2 ,

∀i = 1, . . . , d0 is sufficient for q(p) ≤ 1.

3.8 Some more ideas and interpretation

Note additionally, that Φ and the two passes in each iteration are closely con-
nected to matrix operators

C(p) =



















1
1− P (C|D1)

. . .

1− P (C|Dd0
)

P (C|D1) . . . P (C|Dd0
) 1



















, (3.30)

and

H(p, C(p)) =















1 P (D0|D1) . . . P (D0|Dd0
) 0

0 P (D1|D1) . . . P (D1|Dd0
) 0

...
. . .

...
...

P (Dd0
|Dd0

) 0
0 . . . 0 1















(3.31)

This fact is especially important, as the last matrix gives a hint, that we
may expect a dramatic reduction in the global degree after some iterations. A
closer interpretation might be useful.

It might as well be worthwile to inspect, if Φ has a linear approximation, e.g.
one could try to apply a Newton-like-method to the problem to find a useful
estimation for the first iterations. The model itself seems to be sufficiently
precise, except for the assumptions made to determine q seem to be wrong.
Instead, we should use the probability, that a neighbor has been selected as
c-point and to decrease the (local) related to an expected value.
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4 Computing Interpolation

The interpolation weights for i ∈ F and j ∈ C are determined by using the
following formula:

ωij = −
1

aii +
∑

k∈Dw
i

aik
(aij +

∑

k∈Ds
i

aikâkj
∑

m∈Ci

âkm
) (4.1)

Here â is used as an appreviation:

â =

{

a : a > 0
0 : a ≤ 0

(4.2)

For i ∈ C, we do not interpolate, but use the identity mapping instead.

We return to the common definition of the degree again.

4.1 The sequential algorithm

At first we are going to analyse the sequential version of the algorithm, which
allows us to switch to a parallel version later by adding one single step of commu-
nication. Note that interpreting the above formula in a graph simplifies things
a lot: since we forced (C1) and (H1) respectively to be fulfilled, we see that for
arbitrary i ∈ F and j ∈ C, aij = 0 implies ωij = 0. I.e a nonzero entry ωij
requires aij 6= 0 and we have a convenient way to find an upper bound for the
number of nonzeroes in P.

We use a two pass strategy to perform all necessary computations: The
first pass determines the needed amount of memory, as explained above, and
initializes some things to write the matrix P in CRS format, while the second
pass performs the actual computations. Both algorithms are given in pseudo
code. Be aware that we neglect some minor details.

counter ← 0;
coarsecounter ← 0;
for each i ∈ V {

if i ∈ C {
coarsecounter++;
counter++;

}
else {
for each j ∈ Si {

if j ∈ C {
counter++;

}
}

}
}
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Note, that we are now also able to map the indices of c-points on the fine grid to
those on the coarse grid, using a mapping κ. This helps us to accessthe memory
for P correctly.

The second pass finally assures that the prolongation matrix P is prepared
for further use. Due to the usage of CRS format, this is done by setting up one
row after another. Remark that for rows belonging to f-points, the whole row
(i.e. passage in the vector pdata) is set to zero first (initialization phase in the
first loop), before the actual computation uses a tricky distribution technique
filling all slots simultaneuosly (second loop). Finally, the whole row has to be
scaled (third loop).

for each i ∈ V {
if i ∈ C {

use the identity, i.e. pi,κ(i) ← 1;
}
else{
for each k ∈ Si {

prepare entries of c-points for storing data, i.e. pi,κ(k) ← 0;
mark f-points for distribution;

}
diag(i)← aii;
for each k ∈ Ni {

if k ∈ C {
add aik to pik

}
else if k ∈ Ds

i {
loop over Ak, compute βk(i) =

∑

m∈Ci
akm;

loop over Ak, add aikβk(i)âkjto pij ;

}
else if k ∈ Dw

i {
add aik to diag(i)

}
}
for each k ∈ N c

i {
scale pik by diag(i);

}
}

}

The cost for computing interpolation thus consists of the following parts

Tinterpol,1st = γ{C + (N − C)(ds + dc)}
Tinterpol,2nd = γ{C + (N − C)(d+ 1 + dc + dsd+ dw + dc)},
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which yields overall cost of

Tinterpol,seq = γ{(N − C)(dds + 2d+ 2dc) +N + C} (4.3)

= γO(Nd2). (4.4)

4.2 Implementation on a parallel machine

All we assumed so far to compute a row Pi for any i ∈ V was, that we had
access to the information stored in Ak for each k ∈ Ni and in Ai itself. Formula
(4) shows, that this information is sufficient. Going to a parallel environment,
we have to make sure, that the complete rows are given for all k ∈ Ωp. Thus
we are able to develop a parallel version of the algorithm, after sending row
information for other processors ghost points and receiving the symmetric data.
In the actual implementation, this set is determined by checking required rows
for computation of A2. In this model, we neglect the cost for doing so. These
thoughts yield:

Tinterpol,com = αν + βd
∑

q

|∂Ωq ∩ Ωp| (4.5)

= αν + βO(d|∂Ωp|). (4.6)

Summarizing (4.3) and (4.5), we have:

Tinterpol = αν + βO(d|∂Ωp|) + γO(Nd2). (4.7)
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5 Computing RAP

In the preceding two steps we determined a coarse grid and computed an in-
terpolation (prolongation) operator P. As the fine grid operator is known, we
are now able to construct a coarse grid operator, using the Galerkin coarse grid
approximation:

Ac = RAP (5.1)

Using this notation, we assume R = P T (possibly in the sense of some inner
product space).

If we denote Ac = (αij)i,j∈C , each component of (5.1) algebraically looks
like:

αij =
∑

k∈Ω

rik
∑

m∈Nk

akmpmj (5.2)

which requires transposing and scaling P beforehand, of course.

5.1 The Galerkin operator

If A is symmetric and P has full rank, the Galerkin operator is an orthogo-
nal projector respects to the A-energy inner product, and has the important
property, that

||(I − PA−1c RA)e||A = min
ẽ
||e− P ẽ||A, ∀e (5.3)

holds. This is called the variational property of the Galerkin operator. Note
that the degree of the Galerkin operator Ac is usually larger than the degree of
A, as can be seen e.g. for the 2-D five point Laplacian easily.

5.2 The sequential algorithm

The sequential computation of RAP used in BoomerAMG is a CRS optimized
matrix multiplication, based on graph algorithms. Similar to the algorithm to
set up P in the previous section a two pass strategy is applied; the first pass is
used to determine the number of nonzeroes and to set up temporary vectors,
the second one to compute the product row-by-row. We give a brief sketch of
the idea of the algorithm:

According to (5.2) the problem should be encountered from a graph theoret-
ical point of view, the algorithm itself is just a slight variation of a depth first
search. To figure out, where nonzero entries in the i-th row of the triple matrix
product RAP occur, we have to check all columns k in Ri with nonzero entries.
These are related to rows Ak with columns m, which are related to rows Pm
with columns j again. Once a nonzero entry pmj has been found, a new nonzero
αij is discovered. After all edges pmj were visited, Pm has not to be taken into
account again for any other k. We are allowed to mark the m-th row of P (is
associated with the m-th column of A) as treated. As the entry αij might be
discovered from a different node m̃ in the future again, we should mark j itself
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as being discovered in a search starting at i too. Setting these flags requires two
temporary vectors, which are both initialized with -1, and set to i in the m-th
slot, whenever a row m has been treated or respectively to the number of points
already discovered.

If A is symmetric, the Galerkin operator is symmetric, too, and we rewrite
(5.2) as

αij = αji = (εj , P
TAPεi), (5.4)

i.e. we are allowed two use a simple stencil multiplication scheme to determine
the necessary number of multiplications. For each c-point, we have to visit all
its neighbors, apply the fine grid operator to each of them and finally restrict
the values for all points affected by this operation back to neighboring c-points.
This yields the estimation

TRAP,seq = O(Nd2) (5.5)

Recognize that the less c-points are selected, the faster the construction of the
coarse grid operator will be. Indeed, tests show enormous differences between
the seven point Laplacian and an articial 27-point-stencil.

5.3 The parallel variant

As in the previous sections, the problem of computation is inherently local
again, though we have to investigate carefully, which communication steps are
still required. If we store all information Pi, i ∈ Ωp, on processor p, we are

able to compute the contributionof processor p to Ac, denoted by A
(p)
c . This

represents the operation of the original operator A on the points in Ωp. Since
the sets Ωq are a partition of the original domain Ω, we have

αij =
∑

p∈Π

∑

k∈Ωp

rik
∑

m∈Nk

akmpmj (5.6)

=
∑

p∈Π

α
(p)
ij . (5.7)

Thus, compared to the sequential version, two communication additional
phases are required: we have to submit/receive one layer of boundary data for
P, compute and distribute the contributions to neighboring processes.

send pm, m ∈ ∂Ωq;
receive pm, m ∈ ∂Ωp;

compute α
(p)
i , i /∈ (Ωp ∩ C);

send α
(p)
i , i /∈ (Ωp ∩ C);

receive α
(q)
i , i ∈ (Ωp ∩ C);

add α
(q)
i , i ∈ (Ωp ∩ C);

24



s

?

6
¾ -

?

6
¾ -
i k

m
s s

Figure 1: Example

We remark, that we already took into account the additional cost for compu-
tation, as for a c-point close to the boundary (5.5) already recognizes restriction
from non-local f-points. The time needed for a parallel computation of the
coarse grid operator is thus

Top,par = Top,seq + Top,comm, (5.8)

with
Top,comm = 2αν + β(

∑

q∈Np

|Ωp ∩ ∂Ωq|d+ |∂Ωp ∩ C|dc) (5.9)

which yields
Top,par = αν + βO(|∂Ωp|d) + γO(nd2) (5.10)
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6 Test results

In the following subsection, we show representative results of the performed
tests, stressing the differences between the behavior in sequential and parallel
runs. Scenario one refers to sequential runs, performed on a linux box, with
two Intel Xeon processors and 512 MB RAM; scenario two indicates runs on
IBM ASCI Blue Pacific, using a topology of 4x4x4 processors, i.e. on 16 of
272 nodes, each with 1.5 GB memory. Although the architectures are different,
general tendencies can be discovered. The following two tables show results for
different numbers of gridpoints.

Figure 3 shows an enormous amount of time used for constructing the in-
terpolation operator, although the measured effort for communication is rather
small. As the latter fact matches our theoretical results, we have to conclude
that aspects not described by the model play a crucial role. (Although these
thoughts are somewhat hypothetical, a closer look at the actual implementa-
tion shows, that one part of the innermost loop of the algorithm described on
p. 21, the computation of βk(i), requires a mapping of global indices to local
indices for off-processor points. These searches are performed in O(log|∂Ωp|)),
a considerably small value, but still may cause the factor close to 4 we see, when
we compare the parallel and sequential values relative to cost of interpolation
in the first step.) Additionally note the differing behavior of coarsening, which
partly seems to be related to CLJP, as it already occurs on level 1 and 2.
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Figure 2: Scenario 1, 92x92x92 points.
.

l Tcoarsen Tinterpol TRAP Ttotal n nz dmin dmax dave
0 1.96 (36.8%) 0.35(0.07%) 3.01(56.60%) 5.32 778688 5400032 4 7 6.9
1 2.81 (33.3%) 2.4 (28.4%) 3.24 (38.3%) 8.45 389344 7245736 7 19 18.6
2 1.2 (27.7%) 1.42 (32.8%) 1.71 (39.5%) 4.33 69017 2364793 14 40 34.3
3 0.27 (11.4%) 0.43 (18.1%) 1.67 (70.5%) 2.37 9820 587748 26 81 59.9
4 0.7 (7.5%) 2.29 (24.4%) 6.38 (68.1%) 9.37 2813 667147 95 334 237.2
5 0.07 (9.2%) 0.33 (43.4%) 0.36 (47.4%) 0.76 362 96882 169 349 267.6
6 0 0 0 0 31 961 31 31 31
7 0 0 0 0 2 4 2 2 2

Setup: 30.81 s, equivalent to 38.4 V-Cycles;
Solver:4.81, 6 V-Cycles.

Table 7: 7pt Laplacian, (nx, ny, nz) = (92, 92, 92), (Px, Py, Pz) = (1, 1, 1)
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Figure 3: Scenario 2, 128x128x128 points.
.

l Tcoarsen Tinterpol TRAP Ttotal n nz dmin dmax dave
0 0.76 (31.4%) 0.17 (7.0%) 1.49 (61.6%) 2.42 2097152 14581760 4 7 7
1 1.28 (45.0%) 0.68 (23.9%) 0.88 (31.0%) 2.84 1049989 19638565 7 19 18.7
2 1.61 (42.5%) 1.28 (33.8%) 0.90 (23.8%) 3.79 206294 8409110 12 73 40.8
3 2.68 (36.6%) 3.27 (44.6%) 1.38 (18.8%) 7.33 36854 4201462 28 173 114
4 2.22 (26.2%) 4.37 (51.5%) 1.90 (22.4%) 8.49 4951 1233909 65 379 249.2
5 0.48 (20.8%) 1.51 (65.4%) 0.32 (13.9%) 2.31 633 206143 169 574 325.7
6 0.01 (33.3%) 0.01 (33.3%) 0.01 (33.3%) 0.03 36 1296 36 36 36
7 0 0 0 0 10 100 10 10 10

Setup: 27.19 seconds, equivalent to 31.43 V-cycles;
Solver: 6.92 seconds, 8 V-cycles;

Table 8: 7pt Laplacian, (nx, ny, nz) = (128, 128, 128), (Px, Py, Pz) = (4, 4, 4)
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